12,534 research outputs found

    Role of poly [adp-ribose] polymerase 1 in activating the kirsten ras (Kras) gene in response to oxidative stress

    Get PDF
    In pancreatic Panc-1 cancer cells, an increase of oxidative stress enhances the level of 7,8-dihydro-8-oxoguanine (8OG) more in the KRAS promoter region containing G4 motifs than in non-G4 motif G-rich genomic regions. We found that H2O2 stimulates the recruitment to the KRAS promoter of poly [ADP-ribose] polymerase 1 (PARP-1), which efficiently binds to local G4 structures. Upon binding to G4 DNA, PARP-1 undergoes auto PARylation and thus becomes negatively charged. In our view this should favor the recruitment to the KRAS promoter of MAZ and hnRNP A1, as these two nuclear factors, because of their isoelectric points >7, are cationic in nature under physiological conditions. This is indeed supported by pulldown assays which showed that PARP-1, MAZ, and hnRNP A1 form a multiprotein complex with an oligonucleotide mimicking the KRAS G4 structure. Our data suggest that an increase of oxidative stress in Panc-1 cells activates a ROS-G4-PARP-1 axis that stimulates the transcription of KRAS. This mechanism is confirmed by the finding that when PARP-1 is silenced by siRNA or auto PARylation is inhibited by Veliparib, the expression of KRAS is downregulated. When Panc-1 cells are treated with H2O2 instead, a strong up-regulation of KRAS transcription is observed

    Ptychographic X-ray computed tomography of extended colloidal networks in food emulsions

    Get PDF
    As a main structural level in colloidal food materials, extended colloidal networks are important for texture and rheology. By obtaining the 3D microstructure of the network, macroscopic mechanical properties of the material can be inferred. However, this approach is hampered by the lack of suitable non-destructive 3D imaging techniques with submicron resolution. We present results of quantitative ptychographic X-ray computed tomography applied to a palm kernel oil based oil-in-water emulsion. The measurements were carried out at ambient pressure and temperature. The 3D structure of the extended colloidal network of fat globules was obtained with a resolution of around 300 nm. Through image analysis of the network structure, the fat globule size distribution was computed and compared to previous findings. In further support, the reconstructed electron density values were within 4% of reference values.Comment: 19 pages, 4 figures, to be published in Food Structur

    Antiferromagnetic noise correlations in optical lattices

    Full text link
    We analyze how noise correlations probed by time-of-flight (TOF) experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional (2D) and three-dimensional (3D) optical lattices. Combining analytical and quantum Monte Carlo (QMC) calculations using experimentally realistic parameters, we show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related critical exponent of the AF transition from the noise.Comment: 4 pages, 4 figure

    Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles:delivery and bioactivity in pancreatic cancer cells

    Get PDF
    KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription factor essential for KRAS transcription. It is based on the use of palmitoyl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with lipid-modified G4-decoy oligonucleotides and a lipid-modified cell penetrating TAT peptide. The potency of the strategy in pancreatic cancer cells is demonstrated by cell cytometry, confocal microscopy, clonogenic and qRT-PCR assays

    Antigens in human glioblastomas and meningiomas: Search for tumour and onco-foetal antigens. Estimation of S-100 and GFA protein.

    Get PDF
    Extracts of glioblastomas and meningiomas were analysed by quantitative immunoelectrophoresis for the presence of foetal brain antigens and tumour-associated antigens, and levels of 2 normal brain-specific proteins were also determined. The following antibodies were used: monospecific anti-S-100 (glia specific); monospecific anti-GFA (glial fibrillary acidic protein), (astroglia specific); polyspecific anti-foetal brain (12-16th week of gestation); a polyspecific anti-glioblastoma antiserum, absorbed with insolubilized serum, haemolysate and normal brain extract; polyspecific anti-alpha-foetoprotein; and monospecific anti-ferritin. Using the antibodies raised against the tumours, several antigens not present in foetal or adult normal brain were found in the glioblastomas and the meningiomas. These antigens cross-reacted with antigens present in normal liver and were therefore not tumour-associated. S-100 was found in glioblastomas in approximately one tenth the amount in whole brain homogenate, whereas GFA was found 2-4 times enriched. The 2 proteins were absent in meningiomas. The possible use of the GFA protein as a marker for astroglial neoplasia is discussed. Five foetal antigens were found in foetal brain, but none in the tumours. alpha-Foetoprotein could only be demonstrated in foetal tissue extracts, including foetal brain, but not in tumours. Ferritin was detected in all tumour extracts, although the amounts determined were unrelated to histological tumour type

    Strong pressure-energy correlations in van der Waals liquids

    Get PDF
    Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy are found in the Lennard-Jones liquid and other simple liquids, but not in hydrogen-bonding liquids like methanol and water. The correlations, that are present also in the crystal and glass phases, reflect an effective inverse power-law repulsive potential dominating fluctuations, even at zero and slightly negative pressure. In experimental data for supercritical Argon, the correlations are found to be approximately 96%. Consequences for viscous liquid dynamics are discussed.Comment: Phys. Rev. Lett., in pres

    The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: Implications on transcription

    Get PDF
    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. We designed oligonucleotides mimicking the KRAS G4-motif and found that 8-oxoG impacts folding and stability of the G-quadruplex. Dimethylsulphate-footprinting showed that the G-run carrying 8-oxoG is excluded from the G-tetrads and replaced by a redundant G-run in the KRAS G4-motif. Chromatin immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression

    Changing the Support of a Spatial Covariate: A Simulation Study

    Get PDF
    Researchers are increasingly able to capture spatially referenced data on both a response and a covariate more frequently and in more detail. A combination of geostatisical models and analysis of covariance methods may be used to analyze such data. However, very basic questions regarding the effects of using a covariate whose support differs from that of the response variable must be addressed to utilize these methods most efficiently. In this experiment, a simulation study was conducted to assess the following: (i) the gain in efficiency when geostatistical models are used, (ii) the gain in efficiency when analysis of covariance methods are used, and (iii) the effects of including a covariate whose support differs from that of the response variable in the analysis. This study suggests that analyses which both account for spatial structure and exploit information from a covariate are most powerful. Also, the results indicate that the support of the covariate should be as close as possible to the support of the response variable to obtain the most accurate experimental results

    Representation of the virtual space in extended systems – a correlation energy convergence study

    Get PDF
    We present an investigation of the convergence behaviour of the local second-order Møller-Plesset perturbation theory (MP2) correlation energy toward the canonical result for three insulating crystals with either projected atomic orbitals (PAOs) or various orthonormal representations of the virtual orbital space. Echoing recent results for finite molecular systems, we find that significantly fewer PAOs than localised orthonormal virtual orbitals are required to reproduce the canonical correlation energy. We find no clear-cut correlation between conventional measures of orbital locality and the ability of the representation to span the excitation space of local domains. We show that the PAOs of the reference unit cell span parts of the excitation space that can only be reached with distant local orthonormal virtual orbitals

    Spin-orbit interaction and the 'metal-insulator' transition observed in two-dimensional hole systems

    Full text link
    We present calculations of the spin and phase relaxation rates in GaAs/AlGaAs pp-type quantum wells. These rates are used to derive the temperature dependence of the weak-localization correction to the conductivity. In pp-type quantum wells both weak localization and weak anti-localization are present due to the strong spin-orbit interaction. When determining the total conductivity correction one also have to include the term due to hole-hole interaction. The magnitude of the latter depends on the ratio between the thermal energy and the Fermi energy, kBT/EFk_{\rm B}T/E_{\rm F} and whether the system can be considered as ballistic (kBTĎ„tr/â„Ź>1)(k_{\rm B}T \tau_{\rm tr} / \hbar>1) or diffusive (kBTĎ„tr/â„Ź<1k_{\rm B}T \tau_{\rm tr}/\hbar<1). We argue that due to the relatively low Fermi energy and the moderate mobilities, in the pp-type systems in question, the conductivity correction arising from hole-hole interactions is negligible at the highest temperatures accessible in the experiments. Hence the 'metal-insulator' transition observed at these relatively high temperatures could be caused by interference effects. We compare our calculations of the weak anti-localization correction with the experimental results from different independent groups with special emphasis on the experiments by Simmons et al. We find good agreement between predicted and observed transistion density pcp_{c}.Comment: 6 pages, 4 figures. Accepted to PRB (15 June, 2002
    • …
    corecore